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This paper provides an overview of recent research activities concerning the quantum-mechanical description
of structures and properties of electronically excited chromophores in solution. The focus of the paper is on
a specific approach to include solvent effects, namely the polarizable continuum model (PCM). Such a method
represents an efficient strategy if coupled to proper quantum-mechanical descriptions such as the time-dependent
density functional theory (TDDFT). As a result, the description of molecules in the condensed phase can be
extended to excited states still maintaining the computational efficiency and the physical reliability of the
ground-state calculations. The most important theoretical and computational aspects of the coupling between
PCM and TDDFT are presented and discussed together with an example of application to the study of the
low-lying electronic excited states of push-pull chromophores in different solvents.

1. Introduction

The modeling of excited states formation and relaxation of
molecules in solution is a very important issue in many fields
of chemistry, biology and physics.1 The development of accurate
but still computationally feasible strategies is a challenging task
due to the complexity of the problem in which the processes of
formation and relaxation of the electronic states have to be
coupled with the dynamics of the solvent molecules. As a
consequence, the definition of the excited states of molecular
solutes also requires the characterization of the solvent degrees
of freedom that are composite in nature and very large in
number.

A very well-known example of such a coupling is the
distinction between “nonequilibrium” and “equilibrium” solva-
tion regimes following an electronic transition in the solute. The
differences in the characteristic response time of the various
degrees of freedom of the solvent, in fact, may lead to a
solvation regime in which the slow components (i.e., those
arising from molecular translations and rotations) are not
equilibrated with the excited-state electronic redistribution upon
vertical excitation. The resulting nonequilibrium regime will then
relax into a new equilibrium in which the solvent is allowed to
completely equilibrate, i.e., to reorganize all its degrees of
freedom including the slow ones. Especially for highly polar
solvents, these two different regimes can influence the properties
of the solute excited states in very different ways.

Equilibrium versus nonequilibrium is just one of the specific
issues that have to be properly accounted for in the complex

task of the definition of realistic and accurate models for the
description of structure and properties of excited states in
solution.2 In addition, the necessity of a proper description of
different electronic states implies a quantum-mechanical (QM)
description. These requirements, together with the generally
medium-to-large dimensions of the molecular systems of real
interest in this field, are difficult to satisfy when the effect of
the environment is also to be included. As a result of this
combination of complex aspects, the largest part of the models
proposed in the literature introduces a focused approach, i.e., a
more accurate description of the molecular system of interest
(the chromophore, possibly including small portions of the
environment) and a less accurate description of the remainder.

There are different formulations of the focused approach; the
most common ones are the hybrid QM/molecular mechanics
(QM/MM)3 and the continuum solvation models.4-6 Both of
them use a classical description for the environment but, whereas
in the former the microscopic nature of the solvent molecules
is maintained, in the latter a macroscopic dielectric is used. The
different philosophy beyond the two classes of methods leads
to important differences in both the physical and the compu-
tational aspects of their applications, as well as in their range
of applicability. The methods based on explicit representations
of the environment yield information on specific configura-
tions of the environment around the chromophore, whereas the
continuum models give only an averaged picture of it. On the
other hand, QM/MM requires many more calculations than
continuum models to obtain a correct statistical description. This
much larger computational cost of QM/MM is particularly
disadvantageous in the study of excited states, as the QM level
required is generally quite expensive even for a single calcula-
tion on an isolated system; thus, the necessity to repeat the
calculation many times makes the approach very expensive (or
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even not feasible). For this reason, most of the QM/MM
calculations on excited states make use of semiempirical QM
methods.7 On the contrary, the level of the QM description can
be any when continuum models are used, as the additional cost
with respect to gas-phase calculations remains very limited. In
addition, continuum solvation models include effects of mutual
polarization between the solute and the environment (also those
due to a possible nonequilibrium solvation), whereas standard
QM/MM methods are based on nonpolarizable force fields. As
a matter of fact, QM/MM approaches including environment
polarization have been proposed and also applied to the study
of excited states of solvated systems.8 However, among the
available approaches, the most popular for this kind of study is
still represented by continuum solvation models.9 In particular,
the polarizable continuum model (PCM) developed in Pisa5 has
been shown to give a reliable description of different phenomena
involving electronically excited states.10,11 PCM is in fact a very
general continuum model, which has been extended to many
different QM levels as well as to QM methods to evaluate
energy derivatives with respect to many different perturbations.
These extensions have made PCM applicable to calculate
geometries and properties of various electronic states as well

as to study processes and spectroscopies involving both ground
and excited states.

Within the PCM formulation, an important specificity of the
extension of QM solvation models to describe excited states
has been rigorously analyzed both from a formal and from a
numerical point of view.12 In such an analysis, it has been shown
that the application of these models to either linear response
(random-phase approximation, RPA,13 configuration interaction-
singles, CIS,14 and time-dependent density functional theory,
TDDFT15,16 etc.) or state specific approaches (complete active
space self-consistent field, CASSCF, configuration interaction
CI, etc.) may lead to differences due to an intrinsic nonlinear
character of the solvent response operators used in continuum
models and in polarizable QM/MM. The state specific (SS)
approaches, which are based on the explicit calculation of the
excited-state wave function, properly take into account the varia-
tion of the solute-solvent interaction accompanying the change
of the electronic density during an electronic excitation, whereas
the linear response methods introduce only the effects related
to the corresponding transition density. To reduce these intrinsic
differences, recently some of the authors of the present article
have presented a method in which a SS correction is introduced
in linear response (LR) approaches.17 This method is based on
the use of the relaxed density, which can be obtained in
PCM-LR approaches thanks to their extension to analytical
gradients now available not only at CIS18 but also at TDDFT
level.19

In the present paper we intend to show that the strategies we
have proposed in the years within the PCM framework can be
successfully applied to the study of formation and relaxation
of excited states in solvated systems. In particular, the coupling
of these strategies with the time-dependent density functional
theory (TDDFT) can indeed represent an efficient general
approach to describe solvent effects on spectroscopies, and more
in general on structures and properties of solvated excited states.
TDDFT, in fact, can include correlation effects through the
exchange-correlation potential for both the ground and the
excited states without adding a significant computational effort,
whereas PCM can include all required specificities necessary
to describe excited states in a formally simple and computa-
tionally efficient way. The success of such a coupling is
demonstrated by the increasing number of applications; con-
sidering only ACS journals, the papers published in the last
two years that make use of PCM-TDDFT to describe excitation
processes in solvated systems are more than one hundred.

The paper is organized as follows, in the first part a summary
of the PCM theoretical tools specifically developed to study
excited states is reported and in the second part the same tools
are applied to study two molecular systems belonging to the
family of push-pull systems. Finally, a summary section with
future directions is reported.

2. PCM Tools for Excited States

2.1. Equilibrium vs Nonequilibrium Solvation. When a
PCM description is adopted, the molecular system under scrutiny
(the solute) is described as a QM charge distribution within a
molecular cavity of realistic shape, whereas the environment
(the solvent) is described as a structureless polarizable con-
tinuum,characterizedbyitsdielectricconstants.Thesolute-solvent
electrostatic interactions are described in terms of a new QM
operator (solvent reaction potential operator), V̂σ, expressed as
the electrostatic interaction between the solute and an apparent
surface charge density (ASC) on the cavity surface, which
describes the solvent polarization in the presence of the solute
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nuclei and electrons. In the computational practice a boundary-
element method (BEM) is applied by partitioning the cavity
surface into finite elements and by substituting the apparent
surface charge density by a collection of point charges qk, placed
at the center of each element sk, so to obtain

V̂σ(r))∑
k

1
|r- sk|

q(sk;ε,FGS) (1)

where r is the electronic coordinate and we have indicated the
explicit dependence of the apparent charges q on the solvent
dielectric constant ε and the solute ground-state charge density
FGS (including the nuclear contribution). Within the PCM
framework, over the years different equations have been
proposed to define the apparent charges, here we shall adopt
the most general one also known as integral equation formalism
(IEFPCM).20

The PCM energetic functional to be variationally minimized
and the QM basic equation become

G ) 〈Ψ|Ĥ0 + V̂σ|Ψ〉 - 1
2

〈Ψ|V̂σ|Ψ〉 (2)

and

Ĥeff|Ψ〉 ) [Ĥ0 + V̂σ]|Ψ〉 )EGS|Ψ〉 (3)

where Ĥ0 is the Hamiltonian for the isolated system.
The free energy expression given in eq 3 for a ground state

can be generalized to an excited state K in both an equilibrium
and a nonequilibrium solvation regime.

By rewriting the solute electronic density (in terms of the
one-particle density matrix P on a given basis set) corresponding
to the excited state K as a sum of the GS and a relaxation term
P∆, and by assuming a linear dependence of the solvent charges
(and the reaction potential) on P, we obtain

G K
eq )EGS

K,eq - 1
2∑i

VGS(si) qGS(si)+
1
2∑i

V(si;P∆) q∆(si;P∆)

(4)

where VGS(si) is the electrostatic potential produced by the solute
in its ground state on the cavity surface and EGS

K,eq is the excited-
state energy in the presence of the GS fixed reaction field
(V̂σ(GS)) and is defined as follows:

EGS
K,eq ) 〈ΨK

eq|Ĥ0|ΨK
eq〉 +∑

i

VK(si) qGS(si) (5)

In the above equations a complete equilibration between the
solute in the excited state K and the solvent is assumed. In the
nonequilibrium regime, eq 4 is replaced by a similar equation,
which can be obtained by using two alternative but equivalent,
schemes (often associated to the names of Pekar and Marcus).21

Such two schemes are characterized by a different partition of
the slow and fast contributions to the apparent surface charge;
all the details of these two partitions can be found in ref 5 (here
only what is indicated as Partition II in the reference paper will
be used). In such a partition, the slow and fast indices are
replaced by the subscripts “in” and “dyn” referring to the
“inertial” and “dynamic” solvent polarization, respectively:

qK
dyn ) qGS

dyn + q∆
dyn and qK

in ) qGS
in (6)

By using such a partition, we get

G K
neq )EGS

K,neq - 1
2∑i

VGS(si) qGS(si)+

1
2∑i

V(si;P∆
neq) q∆

el(si;P∆
neq) (7)

which is parallel to what was obtained for the equilibrium case
but this time the last term is calculated using the dynamic
charges q∆

dyn.
The vertical transition energy to the excited state K is finally

obtained by subtracting the ground-state free energy GGS to G K
neq:

ωK
neq )∆EGS

K0,neq + 1
2∑i

V(si;P∆
neq) q∆

dyn(si;P∆
neq) (8)

This equation shows that vertical excitations in solvated systems
are obtained as a sum of two terms, the difference between
excited- and ground-state energies in the presence of a frozen
ground-state solvent (∆EGS

K0,neq) and a relaxation term, which is
determined by the mutual polarization of the solute and the
solvent after excitation. The latter term is obtained by taking
into account the fast and slow partition of the solvent response.
In the following section we shall show that this relaxation term
is the one leading to differences in the two alternative SS and
LR approaches.

2.2. State Specific vs Linear Response. The requirement
needed to incorporate the solvent effects into a state-specific
method is fulfilled by using the effective Hamiltonian Ĥeff

defined in eq 3. The only specificity to take into account is that,
to calculate V̂σ, the density matrix of the electronic state of
interest has to be known. Such a nonlinear character of V̂σ is
generally solved through an iterative procedure:22 at each
iteration the solvent-induced component of the effective Hamil-
tonian is computed by exploiting eq 1, with the apparent charges
determined from the standard ASC equation with the first-order
density matrix of the preceding step. At each iteration n, the
free energy of the state K is obtained as

G K
n ) 〈ΨK

n |H0|ΨK
n 〉 + 1

2∑i

〈ΨK
n |V̂σ(ΨK

n-1)|ΨK
n 〉 (9)

where the solvent operator V̂σ(ΨK
n-1) has been obtained using

the solute electronic density calculated with the wave function
of the previous iteration. At convergence ΨK

n-1 and ΨK
n must

be the same and eq 9 gives the correct free energy of the
state K.

We note that this procedure is valid only for states fully
equilibrated with the solvent; the accounting of nonequilibrium
requires a two-step calculation: (i) an equilibrium calculation
for the initial electronic state (either ground or excited), from
which the slow (or inertial) apparent charges, qin, are obtained
and stored for the successive calculation on the final state. (ii)
A nonequilibrium calculation performed with the interaction
potential V̂σ composed of two components, V̂σ ) Vfixed + Vchange,
where Vfixed is constant due to the fixed qin of the previous
calculation, and Vchange changes during the iteration procedure.
It is defined in terms of the fast (or dynamic) charges qdyn (see
eq 6) as obtained from the charge distribution of the solute final
state.

In contrast, the alternative LR approach is solved in a single-
step calculation for the whole spectrum of the excited states of
interest, similarly to what done for isolated systems.23,24 Also,
for solvated systems we can introduce a TD variational wave
function Ψ(t), expressed in terms of the time-independent
unperturbed variational wave function Ψ(t) ) Ψ0 + ∇ Ψ0d +...
and limit the time-dependent parameter d to its linear term.13
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Instead of working in terms of time, we then shift to the
frequency domain where the linear term in the parameter
assumes the form d ) [X exp(-iωt) + Y exp(iωt)]/2 where the
|X, Y〉 vectors are determined by solving the following system:

[(A B
B* A* )-ω(1 0

0 -1 )](X
Y )) 0 (10)

The quantity in square brackets is the inverse of the linear
response matrix for the molecular solute.24 In eq 10, A and B
collect the Hessian components of the free energy functional
G with respect to the wave function variational parameters. The
poles ((ωK) of the response function give an approximation of
the transition energies of the molecules in solution; the latter
are obtained as eigenvalues of the system (10), where |XK, YK〉
are the corresponding transition eigenvectors.

This general theory can be made more specific by introducing
the explicit QM level; by using a DFT description, we obtain
the time-dependent DFT (TDDFT).16 Within this formalism, the
free energy Hessian terms yield24,25

Aai,bj ) δabδij(εa - εi)+ (ia|jb)+ f ai,bj
xc - cx(ab|ij)+V ai,bj

PCM

(11)

Bai,bj ) (ia|jb)+ f ai,bj
xc - cxδσ(ja|ib)+V ai,bj

PCM (12)

where f ai,bj
xc representsamatrixelementof theexchange-correlation

kernel in the adiabatic approximation, (ia|jb) indicates two-
electron repulsion integrals and εr orbital energies. Here we have
used the standard convention in the labeling of molecular
orbitals, that is, (i, j,...) for occupied and (a, b,...) for virtual
orbitals, and we have introduced the hybrid mixing parameter
cx,26 which allows us to interpolate between the limits of “pure”
density functionals (cx ) 0, no exact exchange) and HF theory
(cx ) 1, full exchange and no correlation).

In the definitions (11) and (12) the effect of the solvent acts
in two ways: (a) indirectly, by modifying the molecular orbitals
and the corresponding orbital energies (they are in fact solutions
of the Fock equations including solvent reaction terms), and
(b) explicitly, through the perturbation term V ai,bj

PCM. This term
can be described as the electrostatic interaction between the
charge distribution ψa

*ψi and the dynamic contribution to the
solvent reaction potential induced by the charge distribution
ψb

*ψj, and it can be written in terms of the vector product
between the electrostatic potential and the induced apparent fast
charges, determined by the corresponding transition density
charge, namely

V ai,bj
PCM )∑

k

Vai(sk)qbj
dyn (13)

It is now possible to meaningfully compare the excitation
energies obtained with the explicit determination of the excited-
state wave functions and those given by the LR theory. By
comparing the PCM term reported in (8) with the one reported
in eq 13, we note that they are formally and physically different;
the former depends on the electrostatic potential and PCM
charges calculated using the relaxed density matrix P∆ of the
excited state, whereas in the latter the same quantities have been
obtained by using transition matrix elements. The difference
between the two approaches can be clarified by interpreting the
excitation in solution as a two-step process: in the first step,
the molecule that used to be in its ground state in equilibrium
with the solvent is excited to the state K in the presence of a
solvent polarization frozen to the value proper for the solute
ground state. The energy change related to this process,

(∆EGS
K0,neq), is equally described by the two theories. In the second

step of the excitation process, the fast degrees of freedom of
the solvent rearrange to equilibrate with the charge density of
the solute excited state; in this step the two theories diverge
because the energy variation accompanying this relaxation is
not explicitly accounted for in the LR framework. On the
contrary, the LR accounts for a correction which, being
originated by the dynamic solute-solvent interactions, might
be classified as a part of dispersion.

2.3. Linear Response Approach to a State-Specific Solvent
Response. In eq 4 (or equivalently in eq 7 for the nonequilib-
rium regime) we have shown that excited-state free energies
can be obtained by calculating the frozen-PCM energy EGS

K and
the relaxation term of the density matrix, P∆ (or P∆

neq), where
the calculation of the relaxed density matrices requires the
solution of a nonlinear problem being the solvent reaction field
dependent on such densities.

If we introduce a perturbative scheme and we limit ourselves
to the first order, an approximate but effective way to obtain
such quantities is represented by the LR scheme as shown in
the following equations.

Using a LR scheme, in fact, we can obtain an estimate of
∆EGS

K0 ) EGS
K - EGS, which represents the difference between

the excited- and ground-state energies in the presence of a frozen
ground-state solvent as the eigenvalue (ωK

0 ) of a non-Hermitian
eigensystem of type (10), where V ai,bj

PCM ) 0 but the orbitals and
the corresponding orbital energies used to build the A and B
matrices have been obtained by solving the SCF equation in
the presence of a ground-state solvent. By using this approxima-
tion, the equilibrium and nonequilibrium free energies for the
excited state K become

G K
eq )GGS +ωK

0 + 1
2∑i

V(si;P∆) q∆(si;P∆) (14)

G K
neq )GGS +ωK

0 + 1
2∑i

V(si;P∆
neq) q∆

dyn(si;P∆
neq) (15)

The only unknown term of eqs 14 and 15 is the relaxation part
of the density matrix, P∆ (or P∆

neq) (and the corresponding
apparent charges q∆ or q∆

dyn). These quantities can be obtained
through the extension of LR approaches to analytical energy
gradients (see next section). In these extensions the so-called
Z-vector27 (or relaxed-density) approach is used; as shown in
the next section, this approach allows a computationally efficient
implementation of the post-HF and TDDFT analytical gradients.
The solution of the Z-vector equation as well as the knowledge
of eigenvectors |XK, YK〉 of the linear response system allows
one to calculate P∆ for each state K as

P∆ )TK +ZK (16)
where TK is the unrelaxed density matrix with elements given
in terms of the vectors |XK, YK〉, whereas the Z-vector contribu-
tion ZK accounts for orbital relaxation effects.

Once P∆ is known, we can calculate the corresponding
apparent charges q∆

x ) q(εx,P∆
x ), where

{ εx ) ε

P∆
x ) P∆ equilibrium;

q∆
x ) q∆

{ εx ) ε∞

P∆
x ) P∆

neq nonequilibrium

q∆
x ) q∆

dyn

By introducing the relaxed density, P∆, and the corresponding
charges into eqs 4 (or eq 7), we obtain the first-order ap-
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proximation to the “exact” free energy of the excited state by
using a linear response scheme. This is just what we have called
“corrected” linear response (cLR) approach.17 The same scheme
has been successively generalized to include higher order
effects.28

To have a qualitative estimate of the changes in excitation
energies one obtains moving from LR to cLR approach, we
can adopt the simple diagnostic index formulated in ref 17 using
a first-order perturbation theory for a simplified system (a dipole
at the center of a spherical cavity). Such an index correlates
the correction of the SS and LR approaches with respect to the
frozen-solvent transition energy ωK

0 with state and transition
dipoles, namely

ωK
0 -ωK

LR

ωK
0 -ωK

SS
)

2µ0K
2

∆µ0K
2

(17)

where ∆µ0K is the difference between the ground- and excited-
state K dipole moment and µ0K is the corresponding transition
dipole. Obviously, we cannot expect that such a relation based
on a spherical cavity and a dipolar coupling between the solute
and the reaction field is exactly fulfilled by the PCM values
but it is reasonable to suppose that the correlation with ∆µ0K

and µ0K is maintained. By doing that, we can predict the
differences between LR and cLR transition energies for some
typical excitations (namely nπ*, ππ* and charge transfer) from
the graph reported in Figure 1.

As can be seen from the graph, the largest differences are
found for transitions in which the difference between the dipole
change and the transition dipole is large; in particular, ωK

cLR will
be significantly smaller (larger) than ωK

LR if ∆µ0K
2 is much larger

(smaller) than 2 µ0K
2 . These two extreme situations typically

apply to nπ* and charge-transfer transitions, respectively.
We conclude this section by observing that, even if here it is

interesting to emphasize possible differences between the two
approaches, it is also important to note that the solvatochromic
contribution related to the inertial response of the solvent (i.e.,
that determining ωK

0 ) is described in the same way. With such
a contribution being the main part of relative solvatochromic
shifts, we can expect that in all cases cLR and the LR approaches
will give very similar descriptions of the solvent effect and, in
particular, of the relative shift passing from one solvent to the
other.

2.4. Analytical Gradients of the Excited State Energy.
Once we have described the extension of PCM to LR approaches
to evaluate excitation energies, the natural following step is to

generalize it to the analytical derivatives with respect to specific
perturbations. In this way, in fact, we can extend the study of
excited states to their relaxed geometries and properties.

The evaluation of analytical derivatives of the PCM-TDDFT
excitation energy ω with respect to the generic parameter (e.g.,
a nuclear coordinate) � has been proposed by Scalmani et al.,19

as a generalization of the analogous derivative for the PCM-CIS
excitation energies.18 The starting point is the definition of the
gradient of the poles of eq 10; this gradient does not require
any derivative of the excitation amplitudes (i.e., the eigenvectors)
because they have been variationally determined, but it requires
the changes in the elements of the Fock matrix. These, in turn,
require the knowledge of the MO coefficients derivatives, which
are the solution of the couple perturbed Kohn-Sham equations
(CPKS).

It has been shown that there is no need to solve the CPKS
equations for each perturbation, but rather only for one degree
of freedom, which represents the orbital relaxation contribution
to the one-particle density matrices (1PDM) involved in all post-
SCF gradient expressions.27 In the resulting equation, the
occupied-occupied and virtual-virtual blocks of the P∆ matrix
are already available from the diagonalization of (10), whereas
the occupied-virtual block is the unknown (see eq 16).

The final form of the gradient of the excitation energy is
conveniently expressed in the AO basis as

ω� )∑
µν

hµν
� Pµν

∆ +∑
µν

Sµν
� Wµν + ∑

µνκλ
(µν|κλ)�Γµν,κλ +ωxc,� +

ωPCM,� (18)

where we have used µ, ν,... to indicate atomic basis functions,
Γµν,κλ to indicate the two-particle density matrix (2PDM), which
collects all the contributions that multiply the integral first
derivatives (µν|κλ)�, and Wµν to indicate the energy weighted
density matrix. Here hµν

� and Sµν
� are the derivatives of the one-

electron Hamiltonian and the overlap matrix, respectively, and
ωxc,� is a derivative of exchange-correlation contributions. All
the details of the derivation of this expression can be found in
the reference paper, here it is useful to focus on the PCM parts
only. Equation 18 includes two explicit PCM contributions:

ωPCM,� )∑
µν

Vµν
PCM(�)Pµν

∆ + ∑
µνκλ

V µν,κλ
PCM(�)(X+ Y)µν(X+ Y)κλ

(19)

even if the solvent reaction field also implicitly affects eq 18
through P∆ and W. The first explicit PCM contribution is
common to all post-SCF gradients and involves the change in
the 1PDM made by the post-SCF procedure:18

∑
µν

Vµν
PCM(�)Pµν

∆ )∑
µν

Pµν
∆ [∑k

Vµν,k
E qk

w](�)
(20)

In eq 20, Vk
E,∆ is the change in the solute electronic potential on

the cavity surface corresponding to the change in the 1PDM,
Vk

E,∆ ) µνPµν
∆ Vµν,k

E . The second explicit PCM contribution to eq
18 is specific to the linear response theory and arises from the
derivative of the reaction field matrix element Vµν,κλ

PCM .
Equation 18 can be finally summed to the standard DFT

contribution to give the expression for the total free energy
gradient of each state in the presence of the solvent, GTDDFT,�

) Ggs
DFT,� + ω�, where Ggs

DFT,� is the ground-state DFT gradient
contribution (see ref 29).

This procedure can be used to obtained excited-state relaxed
geometries and emission energies by applying the nonequilib-
rium description presented in section 2.1, but this time in a

Figure 1. Graphical representation of a qualitative comparison between
LR and cLR for some common excitations.
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reversed order (i.e., an equilibrated excited state and a non-
equilibrium, or vertical, ground state). As a matter of fact, PCM
has been also extended to model the TD evolution of solvation
(solvation dynamics) following the vertical process of emission.
This generalization is based on the use of a complex dielectric
permittivity as a function of the frequency, ε(ω).30

3. PCM Study of Push-Pull Systems

In this section we report a PCM study of the structure and
properties of the low-lying, intramolecular charge-transfer singlet
electronic state of two push-pull chromophores that possess
an electron-donating group and an electron-accepting group
connected by a conjugated π system, namely julolidine-
malononitrile (JM) and indolinedimethine-malononitrile (IDMN).

Both JM and IDMN have been deeply studied by Myers-
Kelley and co-workers using UV and resonance Raman (RR)
spectroscopies.32,33 JM has been further analyzed with compu-
tational studies by our group34 and by Guthmuller and Cham-
pagne;35 in both studies a PCM description was introduced to
include solvent effects.

Here, a comparative analysis of the two systems is presented;
such an analysis will start from the suggestions of the two
previous papers34,35 (namely the need of including solvent effects
and the importance of a correct QM description), but it will
proceed further by applying the PCM tools described in the
previous section. In such a way, the nature of the excited state
of interest will be deeply analyzed in terms of both structural
and electronic aspects.

3.1. Computational Details. The calculations were per-
formed at the DFT level by using the 6-311G(d,p) basis set. As
suggested by a previous paper on JM,35 the effect of HF
exchange has been addressed by considering B3LYP, B3LYP-
35, and BHandHLYP hybrid functionals. Although both B3LYP
and BHandHLYP are commonly used functionals,26,36 this is
not the case for B3LYP-35, which is a Becke three parameter
hybrid functional constructed by the following expression:

AEX
Slater + (1-A)EX

HF +B∆EX
Becke +EC

VWN +C∆EC
LYP

with A, B, and C being 0.65, 0.585, and 0.81, respectively. In
comparison, for the B3LYP functional the values are 0.8, 0.72,
and 0.81, respectively. The use of these functionals has been
motivated by the expected significant dependence of the excited-
state geometries and properties on the amount of Hartree-Fock
exchange in the functional (B3LYP, BHandHLYP, and B3LYP-
35 contain 20%, 50%, and 35% of Hartree-Fock exchange,
respectively).

In addition, a fourth functional has been used to test the
reliability of DFT hybrid functionals against a proper description
of charge-transfer electronic transitions. It has, in fact, being
pointed out that standard TDDFT can yield substantial errors
for these CT states; these errors have also been attributed to
the wrong long-range behavior of the applied standard xc-
functionals.37 To improve the accuracy of CT excitations, while
maintaining good quality local excitations, a proposal has been
that of partitioning the 1/r operator in the exchange term into
short- and long-range components.38 Short-range exchange is
then treated primarily using a local functional; long-range
exchange is treated primarily using exact orbital exchange. Here
in particular, we shall adopt one of this new functionals, the
so-called Coulomb-attenuated (CAM-B3LYP)39 functional, which
contains just 19% exact exchange at short-range, like a
conventional hybrid, but 65% at long-range.

Solvent effects were described by exploiting the IEFPCM20

with a molecule-shaped cavity made of interlocking spheres

centered on heavy atoms: the default set of sphere radii (UA0)
implemented in the Gaussian code was exploited. Vertical
excitation energies were obtained in the nonequilibrium solva-
tion regime, by exploiting both the linear response (LR) and
the corrected LR (cLR) schemes as described in sections 2.2
and 2.3. Excited-state geometries and properties were obtained
applying the TDDFT gradients implementation to all four
functionals; see section 2.4. Resonance Raman spectra in
solution were obtained by exploiting the extension of IEFPCM
to STD approach.34 All QM calculations were performed using
a development version of the Gaussian package40 whereas the
vibronic structure of absorption spectra was simulated by
exploiting the FCfast code.41

3.2. Ground-State Structures and Properties. Before mov-
ing to the study of excitation and excited-state geometries and
properties, let us focus on ground-state geometry and electronic
charge distribution.

A key geometrical parameter useful to rationalize the behavior
of push-pull systems is the bond length alternation (BLA)
index;42 such an index, which is defined as the difference
between the average length of the carbon-carbon single and
double bonds, has been widely used in the literature focusing
on the structure and properties of push-pull systems (see, e.g.,
ref 31). By definition, a positive BLA value is associated to the
neutral form, a negative value to the zwitterionic form and a
zero value to a delocalized system (see Figure 2):

In Figure 3 the variations of BLA for IDMN and JM moving
from cyclohexane to acetonitrile are reported, as obtained by
using the four DFT functionals.

The values reported are qualitatively consistent with a two-
state model, pictorially represented in Figure 2. More specifi-

Figure 2. Structure of julolidine-malononitrile (JM) and indolinedi-
methine-malononitrile (IDMN) in terms of the two resonance forms.
The indication of selected bond distances is also given.

Figure 3. Variations of the BLA index for IDMN and JM moving
from cyclohexane (CYC) to acetonitrile (ACN), as obtained by using
the four selected DFT functionals.
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cally, as the solvent polarity increases, the ground state displays
a more zwitterion-like structure: with increasing solvent polarity
and increasing zwitterionic character, we observe alternate
positive and negative variations of the single and of the double
bond lengths along the whole skeleton going from the amino
to the cyano nitrogen. The expected solvent dependence of the
conjugated bond lengths is easily deduced by inspection of the
resonance forms in Figure 2. This behavior is almost identical
at each DFT level of description.

In more detail, as can be seen from the inspection of Figure
3, an increase in the BLA index is noticed by increasing the
HF exchange percentage in the DFT functional, i.e., going from
B3LYP to B3LYP-35, BHandHLYP, and CAM-B3LYP. Such
a behavior is common both to cyclohexane and to acetonitrile.
A greater HF exchange percentage yields more localized single
and double bonds.

Despite this common behavior of BLA, the two chromophores
show a different response to the solvent. IDMN is described as
a neutral structure in the ground state in both solvents with an
increasing delocalization of charge in the polar solvent, as
expected. This is not the case of JM that is described as more
delocalized than IDMN as shown by the small BLA values (for
B3LYP and B3LYP-35 a slightly zwitterion character appears
in acetonitrile). It has to be noted that for IDMN the presence
of an aromatic ring probably makes the two-state picture not
appropriate to rationalize the behavior of this molecule, because
the zwitterionic form breaks the aromaticity.

In Table 1, molecular dipole moments and isotropic (elec-
tronic) static polarizabilities are reported, as a function of the
DFT functional both in cyclohexane and in acetonitrile.

For both molecules, the molecular dipole moment and the
polarizability increases going from apolar to polar solvent, as
expected, and decreases by increasing the HF exchange percent-
age in the functional. Once again, some differences appear in
the two molecules. For IDMN the effects on the dipole moment
due to the change in the functional are less evident than for the
previously analyzed geometrical parameters (the largest variation
of µ is only of about 2%). IDMN isotropic polarizabilities are
slightly more sensitive yielding 4% largest variation going from
B3LYP to CAM-B3LYP. For JM, the molecular dipole moment
decreases of about 11% moving from B3LYP to CAM-B3LYP,
while the static polarizability decreases of about 6%.

In both cases, these data are in agreement with the structural
changes reported in the previous section: both dipole moments
and polarizabilities increase as the BLA index decreases, i.e.,
as a more delocalized structure is present.

3.3. Vertical Transition Energies. Before analyzing excited-
state structure and properties, let us start the discussion on the
transition properties.

As said before, we will focus on the first charge-transfer
singlet transition, which has a ππ* character and is described
as HOMO-LUMO for all functionals and both systems (see
Figure 4).

In Table 2 vertical excitation energies in the two solvents as
obtained within both the LR and the cLR frameworks are
reported. To have a better appreciation of the LR and cLR
differences, the common starting energy (∆EGS

K0,neq) obtained in
a frozen ground-state solvation is also reported (see section 2.2
for details).

In general, for both molecules, a decrease in the transition
energy value is observed with increasing solvent polarity and
such a behavior is common to both LR and cLR. Absolute
energies always increase upon passing from LR to cLR. This
can be explained using the simple but still effective diagnostic
index introduced in eq 17 in terms of differences of dipoles
and transition dipoles. As we shall show in the next section,
both JM and IDMN present an increase of the dipole moment
in the excited state of the order of 3-4 Debye; by using these
values and the transition dipoles reported in Table 2, we see
that the parameter is much larger than one for both systems:
this means that ∆ELR < ∆EcLR. As this increase is similar in
both solvents, the solvatochromic shifts remain almost the same
passing from LR to cLR.

Moving to the comparison with experiments, the absolute
energies are always overestimated, whereas solvatochromic
shifts are reproduced pretty well by all functionals, especially
by CAM-B3LYP. The overestimation of the absolute energies
is surely due to a combination of different effects, including
those related to the use of a continuum electrostatic only
solvation model and more important to the use of a TDDFT
description. To have an idea of the effect of the QM level, we
have compared gas-phase TDDFT results with that obtained at
SAC-CI level,43 which is an accurate method to predict transition
energies. For IDMN, all functionals overestimate the SACCI
value of about 0.3, 0.5, 0.7 and 0.6 eV for B3LYP, B3LYP-35,
BHandHLYP, and CAM-B3LYP, respectively. If we assume
that the intrinsic error due to TDDFT is not dependent on the
solvent, we can subtract the TDDFT-SACCI differences from
the energies reported in Table 2 to obtain effective energies;
with that, a good agreement with experiments is recovered,
especially for CAM-B3LYP/cLR.

It is also interesting to comment further on the difference
between B3LYP and CAM-B3LYP. To do that, we will apply
the analysis recently proposed by Peach et al.,44 where the
assessment of the performance of B3LYP, and CAM-B3LYP
exchange-correlation functionals for the calculation of local,

TABLE 1: Dipole Moment (Debye) and Isotropic Static
Polarizability (Å3) for the Two Molecules in the Two
Solvents As Obtained with Different Functionals

µ R

CYC ACN CYC ACN

JM
B3LYP 13.7 17.3 39.3 50.3
B3LYP35 13.4 16.7 37.6 47.8
BHandHLYP 13.0 16.1 36.2 45.7
CAM-B3LYP 12.2 15.9 37.1 47.1

IDMN
B3LYP 12.3 15.4 39.2 48.5
B3LYP35 12.3 15.3 37.6 46.2
BHandHLYP 12.3 15.2 36.3 44.3
CAM-B3LYP 12.0 15.1 37.3 45.8 Figure 4. Pictorial view of the HOMO and LUMO orbitals of JM

and IDMN.
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Rydberg, and intramolecular CT excitation energies was quanti-
fied in terms of a numerical factor (0 < Λ < 1), which measures
the extent to which excitation energy errors correlate with the
spatial overlap between the occupied and virtual orbitals. In
particular, a small value of Λ signifies a long-range excitation
(which should be better described by CAM-B3LYP), whereas
a value closer to 1 is related to a short-range excitation (which
should be well described by B3LYP). The calculation of the Λ
index for JM and IDMN with the two (B3LYP and CAM-
B3LYP) functionals shows in all cases values that vary between
0.65 and 0.75, i.e., in the window of values where B3LYP give
reliable results.44

3.4. Excited-State Structure and Properties. Let us analyze
structural changes of the charge-transfer state following the
vertical excitation by using, once more, the BLA index (see
Figure 5).

For both molecules, the BLA index for the excited state shows
an inverse behavior with respect to the ground state. In both
solvents the JM excited state is described as a zwitterion by all
functionals (BLA < 0) with the exception of B3LYP in
cyclohexane, which gives a small positive BLA. Also, for IDMN
a negative BLA is found in both solvents with BHandHLYP
and CAM-B3LYP, whereas B3LYP35 in cyclohexane and
B3LYP in both solvents give positive and not negligible BLA.
From this analysis, it is evident that B3LYP fails at describing
structural changes upon excitation, whereas the correct picture
is recovered either by increasing the percentage of exact
exchange (as in BHandHLYP) or by separating out the short
and long-range contributions (as in CAM-B3LYP). Also,
B3LYP-35 introduces significant improvement in the description

of the excited-state geometry with respect to B3LYP; however,
such an improvement is not sufficient to get the correct picture
for IDMN.

To characterize the excited states also from the electronic
point of view, in Table 3 excited-state dipole moments obtained
at GS minimum geometry (vertical) and at relaxed geometry
for both molecules are reported. This allows us to obtain
information on the role played by structural and electronic
changes resulting from the electronic excitation.

The inspection of the table shows that the major contribu-
tion to the change in the dipole moment passing from ground
to excited state results from the vertical excitation: the
excited-state nuclear relaxation causes only a further slight
increase in the dipole moment. This is particularly true for
JM in cyclohexane, where the “vertical” dipole is almost
equal to that at the excited-state geometry. We recall that in
acetonitrile, in addition to the different geometry, the
“relaxed” values distinguish from the vertical ones in the
solvation regime used, namely nonequilibrium in the vertical
and equilibrium in the relaxed.

The effect of the different functional is quite small especially
for JM, but some trends can be observed. Looking first to
vertical values, we see that in both molecules the increase of
exact exchange (passing from B3LYP to B3LYP-35 and
BHandHLYP) leads to smaller dipole moments. This decrease
is counterbalanced by the separation between short- and long-
range exchange introduced in CAM-B3LYP. If the effect of
the functional on the geometry is also considered using the
relaxed dipole moments, we see a different behavior for the
two molecules. For JM, all functionals are quite similar, whereas
for IDMN, B3LYP gives much larger dipole moments than the

TABLE 2: Excitation Energies (eV) for the Two Molecules in the Two Solvents As Obtained with Different Functionalsa

∆EGS
K0,neq LR cLR

CYC ACN CYC ACN shift CYC ACN shift

JM
B3LYP 3.27 3.21 3.09 (9.20) 3.04 (9.23) -0.05 3.22 3.17 -0.05
B3LYP35 3.43 3.35 3.28 (9.04) 3.21 (9.23) -0.07 3.42 3.34 -0.08
BHandHLYP 3.62 3.51 3.46 (8.96) 3.37 (9.18) -0.09 3.59 3.50 -0.09
CAM-B3LYP 3.50 3.40 3.35 (8.96) 3.25 (9.19) -0.10 3.48 3.38 -0.10
exp 2.84 2.72 -0.12

IDMN
B3LYP 3.37 3.32 3.22 (9.25) 3.19 (9.17) -0.03 3.36 3.32 -0.04
B3LYP35 3.57 3.52 3.41 (9.29) 3.39 (9.24) -0.02 3.56 3.52 -0.04
BHandHLYP 3.76 3.71 3.60 (9.28) 3.56 (9.24) -0.04 3.75 3.70 -0.05
CAM-B3LYP 3.63 3.58 3.47 (9.32) 3.43 (9.30) -0.04 3.62 3.57 -0.05
exp 2.90 2.85 -0.05

a In parentheses, transition dipoles are also reported (Debye). Where available, experimental values32,33 are reported.

Figure 5. Variation of the BLA index following the excitation for JM
and IDMN in cyclohexane (CYC) and acetonitrile (ACN). The four
selected DFT functionals are considered.

TABLE 3: Vertical and Relaxed Excited-State Dipoles
(Debye) for the Two Molecules in the Two Solvents As
Obtained with Different Functionals

vertical relaxed

CYC ACN CYC ACN

JM
B3LYP 17.56 20.08 17.59 21.46
B3LYP35 17.08 19.61 17.42 21.51
BHandHLYP 17.07 19.48 17.28 21.42
CAM-B3LYP 17.14 19.45 17.38 21.60

IDMN
B3LYP 15.66 18.63 16.70 20.06
B3LYP35 14.93 17.68 16.17 19.37
BHandHLYP 14.74 17.27 15.45 18.54
CAM-B3LYP 14.86 17.20 15.02 18.05
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other functionals. This unique behavior of B3LYP is a direct
consequence of what already commented for BLA reported in
Figure 5.

A final analysis of the change in the state character upon
excitation can be obtained in terms of a population analysis.
Here the Merz-Kollman (MK) model is adopted46 by using
both the vertical and the relaxed excited-state geometries. To
have a more direct analysis, it is convenient to define a CT
parameter as

fCT )∆D
exc-gs -∆A

exc-gs

where ∆X
exc-gs is the difference of charge in the donor or acceptor

unit upon excitation. If the excitation really corresponds to a
CT from donor to acceptor, then ∆D

exc-gs is large and positive
and ∆A

exc-gs is still large in absolute value but negative. As a
result, fCT will be large and positive. To calculate fCT, we have
to define the donor and acceptor units; in both molecules we
have assumed the ring nitrogen atom as the donor and the
C(CN)2 as the acceptor. The results obtained are reported in
Figure 6 for all the functionals and the two solvents.

Once again JM and IDMN present quite different behavior:
for JM fCT is always positive and increases with the solvent (by
increasing the percentage of HF exchange we observe only a
small increase). In contrast, for IDMN the effect of the
functional is more dramatic as fCT changes sign by increasing
the HF exchange. From this graph it is evident that the excitation
in JM presents a much more pronounced CT character than
IDMN; in IDMN the excited-state character strongly depends
on the functional used and in particular on the percentage of
HF exchange but also on the separation into short and long-
range terms. Note that B3LYP always predicts a reversed flow
of charge from the expected acceptor to the donor (i.e., fCT <
0).

To conclude the analysis, we will combine the results obtained
so far for JM and IDMN ground- and excited-state structures/
properties and use them to simulate UV and Resonance Raman
(RR) spectra.

In Figure 7 the simulated absorption spectra are reported;
these are obtained by calculating the Franck-Condon integrals
of vibrational wave functions belonging to two different
electronic states as implemented into the program FCFAST.
Experimental findings taken from refs 32 and 33 are also shown
as insets. The simulation of the band shapes was done by using

CAM-B3LYP ground- and excited-state geometries and ground-
state harmonic frequencies (which are assumed to be valid also
for the excited state), and a bandwidth of 500 cm-1. This value
was taken to reproduce the experimental broadening of the
spectrum. So to have a more direct comparison with experi-
mental graphs, spectra are reported in cm-1 for JM and in nm
for IDMN.

For both molecules the agreement between calculated and
experimental findings is satisfactory, the relative intensities of
the secondary peak (actually a shoulder) correctly decreases by
increasing the solvent polarity exactly as in the experimental
spectra. Notice, however, that, because simulated spectra are
normalized with respect to the absorption maximum, nothing
can be said about the main peak intensity passing from one
solvent to the other.

Moving now to RR spectra, the main effects of the solvent
(position of the peaks and their intensities) can be ascribed to
two different origins: one due to the solvent-induced changes
in the geometry of both ground and excited states and the other
due to the variations induced in the electronic distribution of
both states. As far as concerns the theoretical aspects related to
the implementation of PCM-RR, the interested reader can find
all the details in ref 34; here we shall only recall that the
application of PCM to the two computational strategies com-
monly used to simulate resonance Raman spectra (the transform
theory, TT, approach by Peticolas and Rush47 and the short-
time dynamics, STD, theory48) involves the determination of a
different portion of the potential energy surface (PES) for the
solvated excited state together with a different solvation regime.
Namely, in TT an equilibrium solvation and a completely
relaxed geometry is used to describe the excited state, whereas
in STD the vertical (or Franck-Condon) portion of the excited-
state PES is used together with a nonequilibrium solvation.
These differences in the treatment of the solvent effect suggests
that the STD approach is more suited than TT to describe the
sequence of fast events occurring in the Resonance Raman

Figure 6. fCT parameter (see text) for JM and IDMN in cyclohexane
(CYC) and acetonitrile (ACN) with the four selected DFT functionals.

Figure 7. CAM-B3LYP simulated absorption spectra for JM and
IDMN as obtained by combining calculated excitation energies with
Franck-Condon integrals. Experimental findings taken from ref 32.
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experiments of solvated systems. An analysis of the effects of
these different solvation regimes determining TT and STD
spectra of JM can be found in the cited paper. The same
molecular system has bee further analyzed in a successive paper
by Guthmuller and Champagne,35 where a detailed analysis of
the effects of different DFT functionals is reported.

Starting from the results of these studies on JM, here it is of
interest to focus on IDMN. As said above, the STD better
represents the solvation effects on RR spectra; therefore, in the
present study the analysis will be limited to STD intensities,
which are defined as45

I0f1m
(ωm) ∝ ωm

2∆m
2; ∆m )�ωm

p
∆Qm

where ∆m and ∆Qm are the dimensionless displacement and the
displacement along the mass-weighted normal coordinate for
mode m (whose vibrational frequency in the ground state is ωm),
respectively. In the STD framework, ∆Qm is calculated from
the partial derivative of the excited-state electronic energy (EK)
along the normal mode Qm at the ground-state equilibrium
position

∆Qm )- 1

ωm
2(∂GK

∂Qm
)

0

GK is the free energy of the K state, obtained through eq 15
within the corrected linear response approach in the nonequi-
librium solvation regime.

For the ground-state geometry and frequencies we have used
two different functionals, namely CAM-B3LYP and B3LYP,
whereas for excited-state gradients only CAM-B3LYP has been
used: this functional in fact has shown to be the most reliable
method to describe IDMN excited state. Notice that only six
normal modes were selected, the ones showing the largest
variations upon solvation. The corresponding 1300-1800 cm-1

window of the STD-cLR RR spectra is reported in Figure 8 for
both solvents (in the inset the experimental spectra are also
shown).

The mode at about 1360 cm-1 mainly involves the R1 and
R4 bond stretching; the peak at about 1520 cm-1 is due to the
asymmetric stretching mode of the rings. The normal modes
yielding peaks at 1570 and 1606 cm-1 have similar vibrational
components, and in particular the first normal mode involves
the in-phase R1 and R4 stretching with out-of-phase R2 and
R3 stretching; the second mode is composed of the in-phase
R2 and R4 and out-of-phase R3 stretching. The other two normal
modes (at about 1640 and 1650 cm-1) both involve the benzene
ring stretching, and the one at 1650 cm-1 also accounts for the
out-of-phase R2 and R3 stretching.

Moving to the comparison with experiments, the main
experimental features passing from one solvent to the other are
correctly reproduced only by the CAM-B3LYP description using
the B3LYP ground-state geometry (and vibrational frequencies).
Only at this level of description we reproduce the experimentally
observed change in the relative intensities of the peaks in the
1500-1600 region of the spectra. These two peaks are assigned
to modes having dominant contributions from the R2 and R4
stretches. These are double bonds in the neutral structure but
single bonds in the zwitterion, which should make a larger
contribution to the structure in polar solvents. The better
agreement obtained with mixed description seems to indicate
that CAM-B3LYP gives a less accurate description of the peak
position and thus of the ground-state geometry with respect to
B3LYP whereas it well describes the nature of the excited state.
Such an agreement is not unexpected in light of what has
previously been discussed about structural and electronic
parameters of the ground and excited states. In fact, although
B3LYP gives a good description of the ground state (see, e.g.,
the discussion on BLA index and vibrational frequencies),
CAM-B3LYP is instead more reliable in describing the excited
state. In fact, only CAM-B3LYP (and BHandHLYP) give the
correct BLA index behavior in the excited state and the
corresponding description in terms of charge-transfer character,
as evaluated by means of the Merz-Kollman population
analysis.

These results show that the correct description of RR spectra,
which requires the accurate description of the ground- and

Figure 8. Calculated IDMN RRS spectra in the 1300-1800 cm-1 range obtained in the STD-cLR approach in cyclohexane (CYC) and acetonitrile
(ACN). Experimental spectra taken from ref 33 are also shown as insets.
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excited-state PES, is particularly challenging for TDDFT, so
that the use of different functionals and/or basis sets, specifically
tailored to the states under examination may be required.

4. Summary and Future Directions

In this article we have reviewed recently developed compu-
tational tools to study structures and properties of excited-state
chromophores in homogeneous solutions. These tools are based
on the combination of the polarizable continuum model, the
implicit solvation model developed in Pisa since 1981, and the
TDDFT approach. The main reason leading to such a combina-
tion is of computational nature; in fact, continuum models and
TDDFT represent two very general and efficient approaches to
describe solvent effects and excited states, respectively. In
addition, the combination of PCM and TDDFT presents some
more fundamental advantages, as it allows us to easily include
all those aspects that are necessary anytime the formation and
relaxation of excited states have to be modeled in the presence
of a polarizable environment. The PCM-TDDFT scheme in
fact includes (i) the formulation of equilibrium and nonequi-
librium solvation regimes within the framework of the relaxed
density matrix, (ii) the analytical gradient theory for excited
states, within the linear response (LR) approximation, and (iii)
a modification in the basic LR method that introduces state
specific (SS) characteristics but still keeps both its formal
simplicity and computationally efficiency.

The applications we have presented show potentialities and
limits of this scheme to probe structures and properties of excited
states of solvated chromophores, which can now be studied from
their formation from a vertical electronic transition within a
nonequilibrium solvation regime up to their decay, or relaxation,
using a detailed QM description coherently coupled with the
dynamics of the solvent. As a matter of fact, further extensions
of the same scheme have been presented by our group and by
others. Here, it is interesting to recall the extension of
PCM-TDDFT to describe the electronic coupling characterizing
excitation-energy transfers (EET) among solvated chro-
mophores,49 or the simulation of line widths and shapes.50

Another direction of possible extensions of the scheme involves
the inclusion of environments of increasing complexity such
as gas/liquid and liquid/liquid intefaces51 and membranes and
nanoscopic metal particles.52

Further extensions of the PCM methodology to study
phenomena involving excited electronic states are also expected
in the near future, both to overcome some actual limitations
and to expand the variety of phenomena to be studied. For
example, the SS-corrected LR approach is now limited to the
energy evaluation for single point calculations, and it would
desirable to extend this method to include the analytical gradient,
so to be able to compute excited-state equilibrium geometries
at this level of theory. In addition, at present only electrostatic
solvent effects are included in the model; this is a clear
approximation that is realistic in polar environments whereas,
as soon as the solvent polarity decreases, further nonelectrostatic
effects such as repulsion and dispersion can become important
especially when considering excited states.

Another progress to achieve is the improvement in the QM
level of description. The merits and limits of the TDDFT in
describing excited states are well-known; in the present context
it is particularly important to recall the deficiency of TDDFT
in describing excited states of charge-transfer nature, as these
are the states that are expected to undergo large solvent effects.
In these cases, there would be the need to go beyond the TDDFT
and combine PCM with other more stable QM methodologies,
such as those based on a coupled-cluster wave function.

To conclude this article, we cannot forget to recall that all
the methodologies we have presented and those we have
indicated as possible future extensions, are within the continuum
framework. This is indeed an approximation in which all the
microscopic aspects of the environment are neglected. Recent
studies have shown that in many cases this apparently crude
approximation properly compares with methods based on the
explicit treatment of the environment molecules (such QM/MM)
if a refined version of continuum models is used.53 Obviously,
this is true in the cases in which we do not have strong specific
intermolecular interactions between the system of interest and
the environment or when these interactions are averaged out in
the measurement process. In all the other cases, in fact, a purely
continuum approach does not manage to obtain the complete
picture of the environment effects. Also in these difficult cases,
however, the continuum approach can still represent a simple
and effective way to take into account the “mean field” part of
the environment effect whereas all the short-range interactions
which do not average can be introduced using a “supermolecule”
or “cluster” picture. This combined approach in which three
different shells are involved (the molecular system under study,
the strongly interacting environment molecules and the rest) is
indeed very powerful as it accounts not only for both short-
and long-range effects but can also be easily extended to
explicitly include mutual polarization among the various shells
once the explicit additional molecules are treated at QM level
or using a polarizable force field. In addition, the same approach
can be extended to a real dynamic description in which the
molecular degrees of freedom of the system of interest are
coupled to those of the strongly interacting environment in the
presence of the mean field of the remainder. Both these aspects
become particularly important when we want to simulate the
formation and relaxation of excited states.
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